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o B-unsaturated 2-acyl imidazoles catalyzed by the his(oxazolinyl)pyridine
o f-unsaturated 2-acyl imidazoles were synthesized in high yields through Wittig olefination. A short,
+)-heliotridane has been accomplished utilizing this methodology and a 2-acyl imidazole cleavage
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—scandium(lll) triflate complex

and cyclization. This methodology was then extended to the one-pot asymmetric synthesis of 2-substituted indoles.

The Friedel-Crafts reaction has been employed as a power- reported Cu(ll) bis(oxazoline) catalystiowever, both of

ful carbon-carbon bond forming process in modern organic
chemistry? Even though considerable effort has been ex-

these examples focused on the useNedlkyl-substituted
pyrroles at subzero reaction temperatures. We previously

pended in the development of asymmetric Michael-type reported thata,s-unsaturated 2-acyl imidazoles exhibit

reactions between indoles armdf-unsaturated carbonyl
compoundg, the corresponding reaction with pyrroles has
received less attention. MacMillan was the first to report

excellent enantioselectivity and yields for alkylations among
indoles, pyrrole, and 2-methoxyfuran catalyzed by Sc
complex1 (Scheme 15.Considering the value of pyrroles

catalytic asymmetric conjugate additions between pyrroles as useful synthons and as pyrrolidine surrogétes, have

and a,B-unsaturated carbonyl compourid®alomo later
showed that''-hydroxy enones are competent electrophiles
for the conjugate addition of pyrroles utilizing our previously

(1) For a review on the FriedeCrafts reaction, see: Olah, G. A;
Krishnamurti, R.; Prakash, G. K. S. Fried&lrafts Alkylations. In
Comprehensie Organic Synthesidrost, B. M., Fleming, I., Eds.; Pergamon
Press: Oxford, 1991; Vol. 3, pp 29339.

(2) (a) For a review on the previous work on the Fried@tafts reaction
between indoles and,S-unsaturated carbonyl compounds, see: Bandini,
M.; Melloni, A.; Umani-Ronchi, AAngew. Chem., Int. E@004,43, 556~
556. (b) For Sc(lll)-catalyzed additions of indolesd-unsaturated keto
phosphonates, see: Evans, D. A.; Sheidt, K. A.; Fandrick, K. R.; Lam, H.
W.; Wu, J.J. Am. Chem. So@003,125, 10780—10781.

(3) Paras, N. A.; MacMillan, D. W. CJ. Am. Chem. So@001,123,
4370—4371.
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expanded the reaction scope to include a range of pyrrole
nucleophiles. In this letter, we report our studies in the
enantioselective pyrrole Friedel—Crafts alkylation and the
synthesis of the requisiteS-unsaturated 2-acyl imidazoles.
The synthesis off-substituteda,-unsaturated 2-acyl
imidazoles may be accomplished in a number of wassd

(4) (a) Palomo, C.; Oiarbide, M.; Kardak, B. G.; Garcia, J. M.; Linden,
A. J. Am. Chem. So@005,127, 4154—4155. (b) Johnson, J. S.; Evans, D.
A. Acc. Chem. Reg000,33, 325—335.

(5) Evans, D. A.; Fandrick, K. R.; Song, H.-J.Am. Chem. So2005,
127, 8942—8943.

(6) For the hydrogenation of pyrroles to pyrrolidines, see: (a) Kaiser,
H.-P.; Muchowski, J. MJ. Org. Chem1984 49, 4203-4209. (b) Gilchrist,

T. L.; Lemos, A.; Ottaway, C. JJ. Chem. Soc., Perkin Trans. 1997,
3005—3012.



afforded the correspondingS-unsaturated 2-acyl imidazoles
Scheme 1. Asymmetric Catalytic Friedel—Crafts Alkylations 4 in high yields and excelleri:Z selectivities.

with a,5-Unsaturated 2-Acyl Imidazoles As summarized in Table 1, more sterically demanding
O -
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R Table 1. Effects of N-Substitution on the FriedeCrafts
X Mel then Nue(-) Reaction between 2-Acyl Imidazokeand Pyrrole (eq 4)
l Nue(-) ?r: Mel i R vowe o
uc en Me 1 N
—8c—nN._/'™ ~ @ndBase Me” N N, _ Xmol%1 _ MN
N N\? , ° V) + (] crendAmsT L WAL
110 drvoTt % R 0O 4 o 6 ‘
/:\)j\ R 5 -40°C R
1 Ar Nuc
entry R! R2 mol % of 1 ee (%)  yield (%)
1 Me H 5 87 69 (6a)
the preferred method for the preparation of a given substrate 2 iso-Pr H 5 94 91 (6b)
will depend on the3-substituent. Direct acylation of the 3 Ph H 5 94 98 (6¢)
correspondingy,B-unsaturated carboxylic acids is the most 4 Bn H 5 91 84 (6d)
direct route to substratds and4b. However, a more general 5 Me  Me 5 77 69 (6e)
6 iso-Pr  Me 5 89 78 (6f)

method is needed to prepare more complex substrates,

substrates with sensitive functional groups, or substrates 2All reactions were carried out at 0.13 M in substrdt&nantiomeric

where the corresponding carboxylic acid is not readily gﬁg(setsrztgfetermmed by chiral HPLEReaction carried out at 0.26 M in

available. Shibasaki has shown tlgf-unsaturatedN-acyl

pyrroles may be effectively synthesized via Wittig olefina-

tion.” We chose to apply this methodology to the synthesis N.sypstituents on the imidazole moiety afford an increase in

of a,5-unsaturated 2-acyl imidazoles. Preparation of Wittig enantioselectivity. Even though the phenyl substituent was

reagen proceeded cleanly starting frotart-butyl chloro-  gptimal with regard to overall yield (98%) and enantioselectiv-
ity (94% ee), we decided to employ the more readily prepared

_ N-iso-propylimidazoles with a small sacrifice in yield.

After a determination of the optim#l-substituent on the

o 1) L— ] 0 imidazole moiety4, the effects of temperature and catalyst
CI\)L otBu ’__Pr,N THE . Ph3p§)]\(,N @ loading on the illustrated reaction were evaluated (Table 2).
)F’Ph3 benzene, reflux 2 ip’
0 benzene R/%)J\( Table 2. Scandium-Catalyzed Alkylations ef,-Unsaturated
JL 3 2-Acyl Imldazoles4 with Pyrrole5a (eq 5%
R” TH L R O
aldehyde R EZ yield (%) /\)K( ___xmol%1 _ M’“ 5
3a Me >97:3b¢ 93 (4a) J <—7 CH3CN 4 “CroN eAms” L 6 o 7%
3b Et >98:2b4d 77 (4b)
3c i-Pr >99:1 99 (4¢) temp time ee yield
3d CO,Et <99: | 77 (4d) entry R mol % of1 (°C) (h) (%)® (%)
e Ph >99:1 71 (4e) 1 Me (4a) 5 20 5 85 99(6b)
3f p-MeOPh >97:3 96 (4f) 2 Me (4a) 5 0 5 90 95(6b)
3g  p-CO,MePh 99 85 (4g) 3 Me (4a) 5 —40 15 94 96 (6b)
3h p-CIPh 599:1 86 (4h) 4 Me (4a) 2 —40 15 95 99 (6b)
S I
. . e (4a - °
J ;’_E:f; s > ((:f()) 7 Me (4a) 30 40 15 78 99 (6by
’ 8 Me (4a) 50 —-40 15 62 99 (6b)
‘Typical Wittig conditions: 1.2-6 equiv of aldehyde at 0.5 M in 9 Me (4a) 2 0 18 93 90(6b)
benzene, rt to 80 °C for 12 h. *Required an isomerization with 10 Et (4b) 2 0 18 86 91(6g
DRSS DI G0 S0 eae 2 0 9w
dBeforf DMAP isomerization E:Z ratio was 96:4. 12 CO2Et (4d) 2 0 18 84 99 (Gf)
13 Ph (4e) 2 0 18 96 99 (6j)
Figure 1. Synthesis of,3-unsaturated 2-acyl imidazol@s. 14 p-MeOPh (4f) 2 0 18 92 98(6k)
15 p-CO:MePh (4g) 2 0 18 96 99 (6D
16 2-furyl (4k) 2 0 18 91 95(6m)
acetate (Figure 1). Wittig reage® was prepared on a 2 All reactions performed at 0.13 M in substrat€Enantiomeric excess

. . e . determined by chiral HPLC: Reported as conversion based #hNMR
multigram scale and was used without further purification. gpectroscopy.

Wittig olefination betweer? and a variety of aldehyde3
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As summarized, the reaction may be conveniently run at O ||| | | N NI

°C with good enantioselectivities (90% ee) and yields (95%, Table 4. Asymmetric Synthesis of 2-Substituted Indoles,

entry 2). An increase in catalyst loading leads to lower 4 7_pihydroindole Alkylations ofr,8-Unsaturated 2-Acyl
enantioselectivities (entries 3—7). This inverse relationship |midazoles? and Subsequent One-Pot Aromatization

between catalyst loading and ee was previously observed u H R O
by us® Finally, an increase in catalyst loading above 20 mol N_ 1)5mol %1, CHCN N A _N ®)
% leads to deleterious effects on facial selectivities (Table 4+ \ // 4AMS,—40°C, 18h L 9 NJ)
2. entries 6—8). 8 2) p-benzoquinone iPr’
The effect of the3-substituent on reaction enantioselection  ;midazole R e (%) yield (%)
is also summanzgd in Tgble 2. Alkyl an.d aryl sqbstltutlon 1a Mo 95 99 (92)
are well tolerated in the illustrated reaction (entriesl®). b Et 77 97 (9b)
Next, the effects of pyrrole substitution were evaluated dc i-Pr 72 62 (9¢)
(Table 3). N-substitution on the pyrrole heterocycle leads to 4e Ph 96 98 (9e)
af p-MeOPh 90 97 (9
| . P o6 s (or)
4h p-ClPh 96 98 (9h)
Table 3. Scandium-Catalyzed Alkylations ef,-Unsaturated 4i o-ClPh 93 90 (9i)
2-Acyl Imidazole4a and Substituted Pyrroles (eq?6) 4j p-BrPh 95 85 (9j)
R ]31 Me O 4k 2-furyl 80 92 (9k)
rRe N 5mol%1 RN A _N a Al reactions performed at 0.13 M in substrate€Enantiomeric excess
4a + §\ /Z CH4CN, 4 AMS \ N\/) ®) determined by chiral HPLC.
R3 X °C R3 7 -Pr’
R! R2 R3 temp (°C) ee (%)° yield (%) significantly (Table 4). We found that if the addition of 2
H H H _40 94 96 (6b) equiv of p-benzoquinone to the reaction occurs at the end
Me H H —40 78 89 (6f) of the conjugate addition a one-pot preparation of 2-substi-
Bn H H —40 11 67 (7a) tuted indoles from the enondsand 4,7-dihydroindole may
H Et H —40 93 99 (7b) be realized. This two-step sequence is well tolerant of
H Et H 0 89 99 (7b) B-substitution on the enone providing the 2-substituted
H Me Me —40 69 99 (7e) indoles in good to excellent enantioselectivities and yields.
H Me Me 0 78 99 (7c)

Initial attempts to cleave the 2-acyl imidazda directly

2 All reactions performed at 0.13 M in substratéenantiomeric excess  without pyrrole protection afforded the desired methyl ester
determined by chiral HPLC. in low yields ((a) MeOTf, CHCl,, rt; (b) MeOH, DBU).
By utilizing acetonitrile as solvent and a Boc protectiof

d : ioselectivi | the pyrrole nitrogen (96% yield), a greatly increased yield
a decrease in enantioselectivity. For exampldienzylpyr- of the cleavage process to the derived methyl ester was

role is only poorly enantioselective (11% ee, Table 3), a result realized (92%11, Figure 2). Cleavage of the 2-substituted
that is in sharp contrast to the Frieg&lrafts reactions with

N-substituted indoles which afford the highest enantioselec-_
tivities.® The reaction is also not tolerant of substitution at
the 3-position of the pyrrole nucleus; however, 2-ethylpyrrole Boc e

Boc

was a competent nucleophile for the illustrated conjugate N_ 2 i N 1) MeOTf, CH,CN, 1t N e p
addition reaction (93% ee, 99% vyield). M \,) 2) MeOH, DBU " WOMG

One may also access the 2-position of the indole nucleus 10 5N 92% 1
if the dihydroindole is employed as the nucleophilic reaction H Ph O 1) MeOTF, H Bh O
componenﬁ Sa_r_a;oglu has L_mllzed_ this ploy in the racemic ) 1N7 CH4CN, 1t @j/\)LNUC
conjugate addition of 4,7-dihydroindole to enones followed N/  2)Nuc
by ap-benzoquinone oxidation to provide the 2-substituted % ipr
indoles in moderate yields (30—49%). entry Nuc conditions _ Nuc % yield

Initial attempts at the conjugate addition of 4,7-dihydroin- I MeOH.DBU  -OMe 99 (12)
dole to enonéawere quite successful (90% ee, 99% yield); 2 H,0,DBU Ol 71.(13)

however, the subsequent aromatization to the indole nucleus
with p-benzoquinone was sluggish when the oxidation was Figure 2. Cleavage of 2-acyl imidazolekd and 9e.
performed in dichloromethane as reported by Segac® If

this reaction is performed in acetonitrile, the yields improve

indole product9e to the methyl esterl2, 99% yield) and
(7) Matsunaga, S.; Kinosita, T.; Harada, S.; Shibasakij Mim. Chem. the carboxylic acidX3, 71% yield, Figure 2) was effective

Soz:é)ztg;?a 126,H75§9—75|70.N Tetrahediorp005 61 24012405 using the modified methylation conditions described above.
vdar, H.; Sargaglu, N. Tetrahedro ,61, - . . . .

(9) Davies. H. W.; Matasi, J. J.: Ahmed, G. Org. Chem 1996, 61, For the dihydroindole substrates, N-protection was not
2305—2313. necessary.
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If the imidazole cleavage in the pyrrole series was
performed in the absence of an external nucleophile, the
pyrrole nitrogen was internally acylated to give a 2,3-
dihydro-1H-pyrrolizine (Scheme 2). We felt that this chem-

Scheme 2. One-Pot Methylation and Cyclization éb to
2,3-Dihydro-1H-pyrrolizinel4 and the Synthesis of
(+)-Heliotridane

M 0 O
HoEe 1.1 equivMeOTF
N
M ") cHen aAms
6b o N i) Hunig's base
e 99% 14 e
O
N 1) LAH, THF N H, (1 atm)
g 2) Na,SO,-10 H,0 = 5% Rh-Al,03
H Me 97% 15" Me 99%, 90:10dr

(+)-Heliotridane

istry would be amenable to the synthesis of the hexahydro-
1H-pyrrolizine alkaloids such as+)-heliotridane’®Examination

of the one-pot methylation and cyclization utilizing the
known methods of 2-acyl imidazole cleavageroved to

be disappointing (excess MeOTf in @El,, <10% vyield).
The use of excess Mel in DMF, which effectively cleaved
the 2-acyl imidazole in our previous wotkonly provided

(10) For a partial list of syntheses of heliotridane, see: (a) Kim, S.-H.;
Kim, S.-I.; Cha, J. KJ. Org. Chem1999,64, 6771—-6775. (b) Pandey,
G.; Reddy, G. D.; Chakrabarti, 0. Chem. Soc., Perkin Trans.1894,
219-224. (c) Keusenkothen, P. F.; Smith, M. B.Chem. Soc., Perkin
Trans. 11994, 2485—2492. (d) Doyle, M. P.; Kalinin, A. \l.etrahedron
Lett. 1996,37, 1371—-1374.

(11) (a) Miyashita, A.; Suzuki, Y.; Nagasaki, |.; Ishiguro, C.; lwamoto,
K.-l.; Higashino, T.Chem. Pharm. Bull1997,45, 1254—1258. (b) Ohta,
S.; Hayakawa, S.; Nishimura, K.; Okamoto, Mhem. Pharm. Bull1987,
35, 1058—1069. (c) Davies, D. H.; Hall, J.; Smith, E. H.Chem. Soc.,
Perkin Trans. 11991, 2691—2698.
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trace amounts of product. We found that with acetonitrile
as solvent we could use a slight excess (1.1 equiv) of methyl
triflate to completely methylate the 2-acyl imidazole (Scheme
2). The use of DMAP or Hulnig's base to promote acyl
transfer provided the 2,3-dihydrddipyrrolizine 14 in
guantitative yield in a one-pot operation.

With the 2,3-dihydro-1H-pyrrolizinel4 in hand, the
completion of the synthesis ofH)-heliotridane was straight-
forward. The hydrogenatiérof 14 afforded the hexahydro-
pyrrolizin-3-onel5 in quantitative yield (90:10 dr), and the
subsequent LAH reducti@n(97% vyield) provided +)-
heliotridane (Scheme 2). The material was purified and
characterized as the picrate salt (optical rotatiom}*} =
+20.4°(c = 0.77, CHC}) lit.11d (—)-heliotridane, [0}% =
—22.4°(c = 0.25, CHC})).

In summary, we have shown that a wide range of
p-substituted,S-unsaturated 2-acyl imidazoles are compe-
tent electrophiles for the FriedeCrafts reaction with free
pyrroles at noncryogenic temperatures. The use of 4,7-
dihydroindole allowed for the one-pot asymmetric synthesis
of a wide range of 2-substituted indoles. Tdag-unsaturated
2-acyl imidazoles are easily produced from the corresponding
aldehydes and the Wittig reagedtn high yields ande:Z
selectivity. With the synthesis of (+)-heliotridane, we
discovered a more facile and efficient cleavage protocol for
the 2-acyl imidazoles.
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