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ABSTRACT

Enantioselective additions of pyrroles to r,â-unsaturated 2-acyl imidazoles catalyzed by the bis(oxazolinyl)pyridine −scandium(III) triflate complex
(1) have been accomplished. The r,â-unsaturated 2-acyl imidazoles were synthesized in high yields through Wittig olefination. A short,
enantioselective synthesis of the alkaloid ( +)-heliotridane has been accomplished utilizing this methodology and a 2-acyl imidazole cleavage
and cyclization. This methodology was then extended to the one-pot asymmetric synthesis of 2-substituted indoles.

The Friedel-Crafts reaction has been employed as a power-
ful carbon-carbon bond forming process in modern organic
chemistry.1 Even though considerable effort has been ex-
pended in the development of asymmetric Michael-type
reactions between indoles andR,â-unsaturated carbonyl
compounds,2 the corresponding reaction with pyrroles has
received less attention. MacMillan was the first to report
catalytic asymmetric conjugate additions between pyrroles
and R,â-unsaturated carbonyl compounds.3 Palomo later
showed thatR′-hydroxy enones are competent electrophiles
for the conjugate addition of pyrroles utilizing our previously

reported Cu(II) bis(oxazoline) catalyst.4 However, both of
these examples focused on the use ofN-alkyl-substituted
pyrroles at subzero reaction temperatures. We previously
reported thatR,â-unsaturated 2-acyl imidazoles exhibit
excellent enantioselectivity and yields for alkylations among
indoles, pyrrole, and 2-methoxyfuran catalyzed by Sc
complex1 (Scheme 1).5 Considering the value of pyrroles
as useful synthons and as pyrrolidine surrogates,6 we have
expanded the reaction scope to include a range of pyrrole
nucleophiles. In this letter, we report our studies in the
enantioselective pyrrole Friedel-Crafts alkylation and the
synthesis of the requisiteR,â-unsaturated 2-acyl imidazoles.

The synthesis ofâ-substitutedR,â-unsaturated 2-acyl
imidazoles may be accomplished in a number of ways,5 and

(1) For a review on the Friedel-Crafts reaction, see: Olah, G. A.;
Krishnamurti, R.; Prakash, G. K. S. Friedel-Crafts Alkylations. In
ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon
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the preferred method for the preparation of a given substrate
will depend on theâ-substituent. Direct acylation of the
correspondingR,â-unsaturated carboxylic acids is the most
direct route to substrates4aand4b. However, a more general
method is needed to prepare more complex substrates,
substrates with sensitive functional groups, or substrates
where the corresponding carboxylic acid is not readily
available. Shibasaki has shown thatR,â-unsaturatedN-acyl
pyrroles may be effectively synthesized via Wittig olefina-
tion.7 We chose to apply this methodology to the synthesis
of R,â-unsaturated 2-acyl imidazoles. Preparation of Wittig
reagent2 proceeded cleanly starting fromtert-butyl chloro-

acetate (Figure 1). Wittig reagent2 was prepared on a
multigram scale and was used without further purification.
Wittig olefination between2 and a variety of aldehydes3

afforded the correspondingR,â-unsaturated 2-acyl imidazoles
4 in high yields and excellentE:Z selectivities.

As summarized in Table 1, more sterically demanding

N-substituents on the imidazole moiety afford an increase in
enantioselectivity. Even though the phenyl substituent was
optimal with regard to overall yield (98%) and enantioselectiv-
ity (94% ee), we decided to employ the more readily prepared
N-iso-propylimidazoles with a small sacrifice in yield.

After a determination of the optimalN-substituent on the
imidazole moiety4, the effects of temperature and catalyst
loading on the illustrated reaction were evaluated (Table 2).

Scheme 1. Asymmetric Catalytic Friedel-Crafts Alkylations
with R,â-Unsaturated 2-Acyl Imidazoles

Figure 1. Synthesis ofR,â-unsaturated 2-acyl imidazoles.a

Table 1. Effects of N-Substitution on the Friedel-Crafts
Reaction between 2-Acyl Imidazole4 and Pyrrole (eq 4)a

entry R1 R2 mol % of 1 ee (%)b yield (%)

1 Me H 5 87 69 (6a)
2 iso-Pr H 5 94 91 (6b)
3 Ph H 5 94 98 (6c)
4 Bn H 5 91 84 (6d)
5c Me Me 5 77 69 (6e)
6 iso-Pr Me 5 89 78 (6f)

a All reactions were carried out at 0.13 M in substrate.b Enantiomeric
excess determined by chiral HPLC.c Reaction carried out at 0.26 M in
substrate.

Table 2. Scandium-Catalyzed Alkylations ofR,â-Unsaturated
2-Acyl Imidazoles4 with Pyrrole5a (eq 5)a

entry R mol % of 1
temp
(°C)

time
(h)

ee
(%)b

yield
(%)

1 Me (4a) 5 20 5 85 99 (6b)
2 Me (4a) 5 0 5 90 95 (6b)
3 Me (4a) 5 -40 15 94 96 (6b)
4 Me (4a) 2 -40 15 95 99 (6b)c

5 Me (4a) 10 -40 15 93 99 (6b)c

6 Me (4a) 20 -40 15 86 99 (6b)c

7 Me (4a) 30 -40 15 78 99 (6b)c

8 Me (4a) 50 -40 15 62 99 (6b)c

9 Me (4a) 2 0 18 93 90 (6b)
10 Et (4b) 2 0 18 86 91 (6g)
11 i-Pr (4c) 2 0 18 91 90 (6h)
12 CO2Et (4d) 2 0 18 84 99 (6i)
13 Ph (4e) 2 0 18 96 99 (6j)
14 p-MeOPh (4f) 2 0 18 92 98 (6k)
15 p-CO2MePh (4g) 2 0 18 96 99 (6l)
16 2-furyl (4k) 2 0 18 91 95 (6m)

a All reactions performed at 0.13 M in substrate.b Enantiomeric excess
determined by chiral HPLC.c Reported as conversion based on1H NMR
spectroscopy.
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As summarized, the reaction may be conveniently run at 0
°C with good enantioselectivities (90% ee) and yields (95%,
entry 2). An increase in catalyst loading leads to lower
enantioselectivities (entries 3-7). This inverse relationship
between catalyst loading and ee was previously observed
by us.5 Finally, an increase in catalyst loading above 20 mol
% leads to deleterious effects on facial selectivities (Table
2, entries 6-8).

The effect of theâ-substituent on reaction enantioselection
is also summarized in Table 2. Alkyl and aryl substitution
are well tolerated in the illustrated reaction (entries 9-16).

Next, the effects of pyrrole substitution were evaluated
(Table 3). N-substitution on the pyrrole heterocycle leads to

a decrease in enantioselectivity. For example,N-benzylpyr-
role is only poorly enantioselective (11% ee, Table 3), a result
that is in sharp contrast to the Friedel-Crafts reactions with
N-substituted indoles which afford the highest enantioselec-
tivities.5 The reaction is also not tolerant of substitution at
the 3-position of the pyrrole nucleus; however, 2-ethylpyrrole
was a competent nucleophile for the illustrated conjugate
addition reaction (93% ee, 99% yield).

One may also access the 2-position of the indole nucleus
if the dihydroindole is employed as the nucleophilic reaction
component.8 Sarac¸oglu has utilized this ploy in the racemic
conjugate addition of 4,7-dihydroindole to enones followed
by ap-benzoquinone oxidation to provide the 2-substituted
indoles in moderate yields (30-49%).8

Initial attempts at the conjugate addition of 4,7-dihydroin-
dole to enone4awere quite successful (90% ee, 99% yield);
however, the subsequent aromatization to the indole nucleus
with p-benzoquinone was sluggish when the oxidation was
performed in dichloromethane as reported by Sarac¸oglu.9 If
this reaction is performed in acetonitrile, the yields improve

significantly (Table 4). We found that if the addition of 2
equiv of p-benzoquinone to the reaction occurs at the end
of the conjugate addition a one-pot preparation of 2-substi-
tuted indoles from the enones4 and 4,7-dihydroindole may
be realized. This two-step sequence is well tolerant of
â-substitution on the enone providing the 2-substituted
indoles in good to excellent enantioselectivities and yields.

Initial attempts to cleave the 2-acyl imidazole6a directly
without pyrrole protection afforded the desired methyl ester
in low yields ((a) MeOTf, CH2Cl2, rt; (b) MeOH, DBU).
By utilizing acetonitrile as solvent and a Boc protection9 of
the pyrrole nitrogen (96% yield), a greatly increased yield
of the cleavage process to the derived methyl ester was
realized (92%,11, Figure 2). Cleavage of the 2-substituted

indole product9e to the methyl ester (12, 99% yield) and
the carboxylic acid (13, 71% yield, Figure 2) was effective
using the modified methylation conditions described above.
For the dihydroindole substrates, N-protection was not
necessary.

(7) Matsunaga, S.; Kinosita, T.; Harada, S.; Shibasaki, M.J. Am. Chem.
Soc.2004,126, 7559-7570.

(8) Çavdar, H.; Sarac¸oglu, N. Tetrahedron2005,61, 2401-2405.
(9) Davies, H. W.; Matasi, J. J.; Ahmed, G.J. Org. Chem.1996,61,

2305-2313.

Table 3. Scandium-Catalyzed Alkylations ofR,â-Unsaturated
2-Acyl Imidazole4a and Substituted Pyrroles (eq 6)a

R1 R2 R3 temp (°C) ee (%)b yield (%)

H H H -40 94 96 (6b)
Me H H -40 78 89 (6f)
Bn H H -40 11 67 (7a)
H Et H -40 93 99 (7b)
H Et H 0 89 99 (7b)
H Me Me -40 69 99 (7c)
H Me Me 0 78 99 (7c)

a All reactions performed at 0.13 M in substrate.b Enantiomeric excess
determined by chiral HPLC.

Table 4. Asymmetric Synthesis of 2-Substituted Indoles,
4,7-Dihydroindole Alkylations ofR,â-Unsaturated 2-Acyl
Imidazoles,a and Subsequent One-Pot Aromatization

imidazole R ee (%)b yield (%)

4a Me 95 99 (9a)
4b Et 77 97 (9b)
4c i-Pr 72 62 (9c)
4e Ph 96 98 (9e)
4f p-MeOPh 90 97 (9f)
4g p-CO2MePh 97 85 (9g)
4h p-ClPh 96 98 (9h)
4i o-ClPh 93 90 (9i)
4j p-BrPh 95 85 (9j)

4k 2-furyl 80 92 (9k)

a All reactions performed at 0.13 M in substrate.b Enantiomeric excess
determined by chiral HPLC.

Figure 2. Cleavage of 2-acyl imidazoles10 and9e.
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If the imidazole cleavage in the pyrrole series was
performed in the absence of an external nucleophile, the
pyrrole nitrogen was internally acylated to give a 2,3-
dihydro-1H-pyrrolizine (Scheme 2). We felt that this chem-

istry would be amenable to the synthesis of the hexahydro-
1H-pyrrolizinealkaloidssuchas(+)-heliotridane.10Examination
of the one-pot methylation and cyclization utilizing the
known methods of 2-acyl imidazole cleavage11 proved to
be disappointing (excess MeOTf in CH2Cl2, <10% yield).
The use of excess MeI in DMF, which effectively cleaved
the 2-acyl imidazole in our previous work,5 only provided

trace amounts of product. We found that with acetonitrile
as solvent we could use a slight excess (1.1 equiv) of methyl
triflate to completely methylate the 2-acyl imidazole (Scheme
2). The use of DMAP or Hünig’s base to promote acyl
transfer provided the 2,3-dihydro-1H-pyrrolizine 14 in
quantitative yield in a one-pot operation.

With the 2,3-dihydro-1H-pyrrolizine14 in hand, the
completion of the synthesis of (+)-heliotridane was straight-
forward. The hydrogenation6 of 14 afforded the hexahydro-
pyrrolizin-3-one15 in quantitative yield (90:10 dr), and the
subsequent LAH reduction8 (97% yield) provided (+)-
heliotridane (Scheme 2). The material was purified and
characterized as the picrate salt (optical rotation: [R]20

D )
+20.4° (c ) 0.77, CHCl3) lit.11d (-)-heliotridane, [R]20

D )
-22.4° (c ) 0.25, CHCl3)).

In summary, we have shown that a wide range of
â-substitutedR,â-unsaturated 2-acyl imidazoles are compe-
tent electrophiles for the Friedel-Crafts reaction with free
pyrroles at noncryogenic temperatures. The use of 4,7-
dihydroindole allowed for the one-pot asymmetric synthesis
of a wide range of 2-substituted indoles. TheR,â-unsaturated
2-acyl imidazoles are easily produced from the corresponding
aldehydes and the Wittig reagent2 in high yields andE:Z
selectivity. With the synthesis of (+)-heliotridane, we
discovered a more facile and efficient cleavage protocol for
the 2-acyl imidazoles.
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Scheme 2. One-Pot Methylation and Cyclization of6b to
2,3-Dihydro-1H-pyrrolizine14 and the Synthesis of

(+)-Heliotridane
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